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Rayleigh-Ritz procedure for the Zakharov-Shabat system
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The Rayleigh-Ritz variational procedure is applied to solve the Zakharov-Shabat scattering problem. An
approximate solution is assumed as a linear combination of basis functions, leading to a homogeneous system
of linear equations for eigenfunctions and an algebraic equation for eigenvalues. The effectiveness of the
variational approach is illustrated by calculating the discrete spectrum of the Zakharov-Shabat system. Several
numerical examples for various pulse-shaped potentials are given to demonstrate the practical usefulness of the
method.[S1063-651X97)12111-Q

PACS numbd(s): 03.40.Kf, 42.81.Dp

I. INTRODUCTION concerning the error of approximation. Moreover, as a rule, a
simple ansatz provides an estimate for a fundamental mode,
while finding higher modes with reasonable accuracy re-
quires much more complicated calculations.
On the other hand, there exist more systematic methods of
) the Rayleigh-Ritz(RR) type [10], which are based on the
Vax=r(Xv1tilvy, (1D series expansion of eigenfunctions and looking for a solution
as a set of successive approximations. The main advantage
whereq(x), r(x) are given potentials;;, v, eigenfunctions, of such a procedure is that the consecutive approximations
and { the corresponding eigenvalue, plays a major role inend to the exact solution, provided the basis set of the series
solving a variety of nonlinear evolution equations by meanssypansion is complete. Thus, in spite of the fact that in prac-
of the inverse scattering transfori§T) [1]. tice we have to use finite expansions, it is possible to obtain

The system(1) with r(x)=—qg*(x) was applied first by aniq convergence and high numerical accuracy by a reason-
Zakharov and Shab#®] to solve the nonlinear Schadimger abFI)e choice gf basis functgijons. y by

(NLS) equation, and will be referred to as the ZS scattering 5 ) jication of the RR procedure to the ZS svstem differs
problem. Subsequently, Ablowitef al. [1] used the system fromp[t)he standard apprgach in quantum me)i:hatﬁitﬁﬂ.

(1) to formulate the IST in a more general form, including . . . e
such physically significant equations as Korteweg—de Vries':'rSt’.the ZS problem is non-self-adjoint, yvhat |mp_I|es that
eigenvalues are complex, and the stationary points of the

sine-Gordon, and others. The above equations can be appli : . .
appropriate functional are not its extremum values. Second,

to describe nonlinear phenomena in a wide variety of fields X X :
including fluid dynamics, plasma physics, solid-state—low-fhe Z_S pro_blem IS a system_of two equations for two eigen-
temperature physics, etc. In this paper, however, we shaffnctions, i.e., a (X2) matrix eigenproblem, leading to a
focus our attention on the important applications in nonlineaf2NX2N) secular matrix. While the latter difficulty is of
optics, related to the propagation of soliton pulses in opticaPurely technical nature, the former one is essential and
fibers. strongly influences the behavior of an approximate solution.
In the context of nonlinear optics, the scattering potential The aim of the present paper is twofold. First, we discuss
plays a role of an initial pulse, and an important physicalapplication of the RR procedure to the ZS system in a more
problem is to determine the soliton content of this pulse, i.e.systematic way, clarifying some doubts related to the non-
to find the discrete spectrum of the systdf). Unfortu-  self-adjointness of the eigenproblem. Second, we present a
nately, apart from very few initial conditions, for which an few examples demonstrating the practical usefulness of the
exact solution exists, in a general case one has to use apiethod, especially when the pulse area is at its threshold
proximate method§3—7], such as direct numerical integra- value for appearance of a new soliton.
tion of Egs.(1) or analytical approximations based, e.g., on  The paper is organized as follows. In Sec. Il the ZS equa-
the WKB method. Only recently, Desaix, Anderson, andtions are transformed to a non-self-adjoint eigenvalue prob-
Lisak [8], and Kaup and Malomel®] have formulated inde- lem. We find the adjoint operator, derive biorthogonality re-
pendently a variational principle that can be used to solve thi&ations and show that the eigenvalues can be determined as
Zakharov-ShabatZS) system. In both papers mentioned stationary points of a functional equivalent to that reported in
above, the variational solution has been obtained using Refs.[8,9]. The RR procedure is described in Sec. I, both
simple ansatz for the eigenfunctions andv. for a general case and for pulse shapes satisfying some sym-
The main advantage of such an approach is the possibilitynetry relations. In Sec. IV we give numerical examples il-
of obtaining an analytical approximate solution, dependent idustrating applicability of the RR procedure for various pulse
a simple manner on a few variational parameters. Howevehapes. In particular, the effect of chirping on the threshold
the solution obtained this way agrees often only qualitativelyamplitude (or area is discussed in detail. Finally, Sec. V
with the exact solution and, in fact, we have no informationcontains summary of the results and concluding remarks.

The linear scattering problem

v1x=—1{v1+a(X)vy, (1a
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II. SPECTRAL PROBLEM AND VARIATIONAL
FORMULATION

Let us consider the systertl) with a special choice
r(x)=-q*(x), leading to the ZS scattering problem

(28
(2b)

v1x= —1{v1+d(X)vy,

Vox=—0* (X)v1+ilv,,

where the eigenvalué=¢+i# is in general complex, and

localized discrete eigenstates appear wher0.

Rewriting Egs.(2) in a matrix form we obtain the eigen-

problem

LY =V, 3

v

where

dx —q
_ax

For the(rea) scalar product

(q),q’):f (®T-W)dx, (4)
the adjoint problem is given by
LO=pd, (5)
where
~ —dy _q* Wy
£:i ) = ) = ’
—-q Ix W K ¢

and the eigenfunctions satisfy the biorthogonality condition

(@O wiy=0, i#j. (6)

Let us consider the standard functional
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lowest pulse area at the threshold valge-0. For higher
pulse areas additionghighe) modes emerge ay=0, and
70> N> 5> ... Thus, the stationary poi]=0, for
which we obtain the largest eigenvalue corresponds to the
fundamental mode. Subsequéhighen modes can be found
for the stationary points subject to additional orthogonality
conditions:

(@1 ¥)=0, j=0,1,2...,(i—1), 9
wherei denotes the mode number for a higher eigenvalue or
eigenfunction to be determined. We note also that the funda-
mental eigenfunctions have=0 nodes, while higher modes
correspond to nodes for each eigenfunction ,v,.

Ill. RR PROCEDURE AND THE SYMMETRY RELATIONS

From the numerical viewpoint it is convenient to trans-
form the functional(8) to an equivalent form

7(111,02): Jim[(vlvxvz—vzyxvl)—(qv§+ q*vi)]dx

+2|§f Ulvzdx, (10)

and consider trial functions in a form of series expansions,

01:; andn, U2:§n: bnihn, (12)

where ¢, , ¢, are two(generally different complete sets of
basis functions, and, ,b,, are expansion coefficients to be
determined.

Substituting expansiongll) to the functional(10), and
making the derivativesJ/da, ,dJ/db, equal to zero, we ob-
tain a system of homogenous linear equations with respect to
a, andb, . If we replace infinite expansiond.1) by finite
sums consisting ol terms, the resulting secular K2 2N)
matrix will have the following block form:

JP, W)= Sl (7)
T (@w) A B
: . : (12
It is easy to check that;=v,, Wy=v4; thus coming back C D
to vq,v, functions we find
where the matrix elements are given by
- [(vlvxvg—vwvl)—(qv§+q*vi)]dx % ("
J1,07)=i . , Anm= J‘iw(‘ﬁm,x‘//n_¢m'pn,x)dx+2|§fiw¢m¢’ndxa
2] Ull)zdx (13@
tS) o
which is equivalent to the functionals given in Reff8,9]. Brm = —Zf_mq%zpm,dx, m'=m-N,  (13b
It can be easily verified that the variatidd vanishes for
vq,0, Satisfying Egs.(2), and the value of the functional 0
corresponds to the eigenvalde However, contrary to self- Chrm= —ZJ_ q* dndmdx, n'=n—-N, (130

adjoint problems now at the stationary point neither real nor
imaginary part of{ attains an extremum. . .

For given initial pulse shapg(x), the eigenproblemhasa p | ,:j , = st X+ 2i f e dx
finite number of discrete states and the continuous spectrum.” ™ (ot = o ) £) . brdm
The fundamental modélesignated by=0) appears at the (130
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Making the determinant of Eq.l2) equal to zero, we TABLE |. Complex eigenvalueg=¢+in for the boxlike po-

obtain an algebraic equation for the eigenvalue to be detetential(19), A=1, e=1. Successive approximations fdrup to 50

mined. Next, by increasin§l we can form a sequence of are shown together with the exact solution.

consecutive approximations tending to the exact solution if

N—oo, N 3 7

As mentioned in the preceding section, for given initial 10 —0.761 19 0.124 79
pulseq(x) the fundamental mode corresponds to the largest 20 —0.76150 0.124 39
stationary valuep. Next solutions can be found by looking 30 _0.761 44 0.124 44
for a stationary point of the function&¥) at the additional 20 _0.761 46 0124 42
orthogonality conditions(9) introduced to the functional, 50 _0'761 45 0'124 43
e.g., by the Lagrange multiplier method. However, if we fix ; _0'761 453 0'124 499
N, calculate approximatelyt®,v(? v and taked(© as a exac ' '
fundamental mode in Ed9), it can be showrj11] that the
next solutionZM) will be identical with the next zero of the A explie) for 0<x<a
secular determinant of EqL2). Thus, instead of introducing i
additional orthogonality conditions, we can find higher q=\ Aexp(—ie) for —a<x<0 (19
modes simply by looking for consecutive zeros of the secular 0 for |x|>a.

determinant.

So far, we have considered a general form of an initialAsymptotics of the Jost functions for a localized solution of
pulseq(x) and independent expansiofidl). For q(x) satis- Egs.(2) implies that
fying certain symmetry conditions it is possible to find

simple relations between; and v,. Below, we discuss vi—exp—i{x), v,—0, asx——c, (209
briefly only two such symmetries. .
(i) Substituting v1—0, vy—expilx), asx—. (20b)
a(—x)=q(x) (14) In particular, for a potentiatj(x) on a compact support we
have exactly,=0 for x<—a andv,=0 for x>a. Thus, it
into Egs.(2) we find is natural to choose the basis set
=pvi(—x), =+1. 15 . T X
vo(X)=pv}(—X) p (15) 4 =sin (2n—1)z(1—5”, 213

It can be deduced from symmetry considerations phat- 1

for the fundamental modg= +1 for the first higher mode,

etc. Assumingy,(X)=pad,(—x) we find expansion coeffi- Y= psin
cients to satisfy the relatiobp,=ay, , while the eigenvalug

is p.l.Jrer imaginary or appears in complex-conjugate pairs. The potential(19) satisfies the symmetry relatiof16):
(ii) For thus, we can use a reduced form of the secular méh&x
- Numerical results for finite expansions including up to
A(=x)=0*(x) (16) N=50 terms are presented in Tables | and Il, to show the
convergence of the method. The exact analytical solution
follows from matching trigonometric functions at=0,+1

p=x1. (21b

on—1) 2| 1+
(en=Dziir3

we have simply

vo(X)=pv1(—X) p==+1 (17) and next solving the resulting transcendental equation for
’ ’ {=§&+in. A physically meaningful solution must vanish at
wherep=—1 for the fundamental mode, as before. infinity; hence, the asymptotic behavi(®0) requires>0

For ¢,(X) = pé,(—x) expansion coefficients are related for @ localized state.
by b,=a,; hence, the matrix expressions can be substan-
tially simplified. Indeed, forN fixed we obtain a KX N)
secular matrix, with elements given by

TABLE Il. Complex eigenvalueg= £+ » for the boxlike po-
tential (19), A=2, e=1. Successive approximations and exact so-
lutions are shown for the fundamentaQ0) and the first higher

« mode (=1).
Anm:f [(Dnxtfm— ¢n¢m,x)_(qwn¢m+q* bndm)1dx i—0 1
— o0 | = 1=
e N ¢ 7 3 7
+l§j (Pnthm+ Yndpm)dx. (18
- 10 —0.727 89 1.210 65 0.981 00 0.396 99
20 —0.728 48 1.210 35 0.981 29 0.396 74
IV. NUMERICAL EXAMPLES 30 —0.728 23 1.210 35 0.980 98 0.396 85
A. Boxlike pulse 40 —0.728 27 1.210 34 0.981 02 0.396 83
' P 50 —0.728 24 1.210 34 0.980 98 0.396 84
Let us consider first an exampl@] for which exact ana- exact —0.728 241 1.210342 0.980980 0.396 842

lytic solution exists,
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TABLE Ill. Threshold valuesAy, and the shiftsAA for the TABLE V. Imaginary part» of the eigenvalue for the sech

boxlike potentia22) and the chirp parametg@ changing from0to  pulse(23), A=1 and3=0, 3=0.8.

0.1. Results for the first three modes are shown.

n
P N =0 5=0.8
Mode B=0 B=0.1 AA

10 0.475 58 —

0 0.78540  0.78586 0.000 46 20 0.499 63 0.012 03

1 2.35619  2.35590 —0.00029 30 0.500 00 0.019 36

2 3.92699  3.92661 —0.00038 40 0.500 00 0.019 57
50 0.500 00 0.019 60

For A=1, e=1 (Table ) only one localized state exists,
while for A=2, e=1 (Table Il) we obtain two solutions
satisfying >0 and calculated with comparable accuracy.

A more realistic model is a boxlike pulse with a chjfl,

als which form a basis set complete for ¢,%) or (ii) pro-
jecting thex axis onto the finite interval.
In all the cases one could obtain accurate results for well-
Aexp(i Bx?) for |x|<a, localized solutiongfar above the thresholdHowever, as the
(22)  eigenvalue was close to zero, the convergence deteriorated
rapidly, and we were not able to obtain reliable results for
This time, due to symmetry relatiqi4) the resulting eigen- 7=0.
values are purely imaginary; however, we have to use the It turns out, however, that the best and simultaneously the
full (2NX2N) matrix (12). simplest method is an apparently crude approximation con-
It is interesting to investigate threshold values of the pulsesisting in “truncating” the potential for sufficiently large
amplitudeAy, (or equivalently, pulse arg¢asuch that a new |x| values and using the basis set of the typ® on a finite
soliton emerges ap=0. It should be noted that in the vicin- interval. The choice of the cut-off poink|=a depends on
ity of the threshold the eigenfunctions ,v, are weakly lo-  the pulse shape and is a compromise between required accu-
calized, and forp—0 their amplitudes tend to constant val- racy and sufficiently fast convergence. For example, for the
ues as|x|—= [see EQ.(20)]. Such a behavior may cause sech pulse we have chosarr 10 to obtain reasonable con-
numerical instabilities forp=0, especially when solving vergence and the absolute error estimated below’10
Egs.(2) by direct numerical integration. In Table IV we show examples of calculations for a sech
Fortunately, in the variational approach this difficulty pulse (23) with A=1, and3=0, 8=0.8, respectively. Ac-
does not appear, since the regions outsidéxpfa do not  cording to general symmetry considerations, the eigenvalue
contribute to the integrals in E¢10). As a result, we obtain ¢ js now purely imaginary. FoB=0 we obtain the exact
stable numerical solutions in the ViCinity of the thl’eSh0|d.50|ution n=0.5. Asg increases the eigenva|u£decreases
Moreover, it is formally possible to obtain even nonphysicaland the convergence becomes slower. Nevertheless, also for
solutions with <0, i.e., for eigenfunctions divergent as »~0 we obtain stable results. In particular, for
|X| —ce. A=0.75, 0.5, 1.25 we find the thresholdy=0 at
In Table IIl the threshold valueA, are shown for the 3=0.4203, 0.8220, 1.2391, respectively, in excellent
first three  modes, together with the  shift agreement with the literature d4ta).
AA=Aplg=0.1—Amndg=o. It is clear that the effect of chirp To compare the sech pulse with the boxlike case, we have
for small 8 is rather subtle, so accurate calculations are recalculated the threshold amplitudég, and the shifts\A for
quired. We note, thabA>0 for the fundamental mode, g changing from 0 to 0.1. The results fArA are presented
while AA<O for higher modes, in agreement with earlier in Table V together with similar calculations performed for

o for |x|>a.

results[3]. other pulse shapes. We can see that the absoluteAshifs
B. Sech pulse TABLE V. Shifts AA of the threshold amplitudé, for the
Let us consider a sech pulse with a chirp chirp parametep changing from 0 to 0.1. Comparison is made for
the first three modes and various pulse shapes.
q=A seclix)exp(i Bx?). (23
AA

As before, a physically interesting problem is the soliton . _
content of the pulse, as well as the influence of a chirp orMode Box® Sech Sech® Gaussiarf
threshold values of. amplituder pulse aren 0 0.000 46 0.0419 0.0107 0.002 64

Now however,g is not on a compact support, and a nu- —0.00029 0.0652 0.0006 0.001 68

merical problem arises, how to reconstruct eigenfunction§
v1,V5 in the infinite region (-,%). This problem becomes
more pronounced in the vicinity of=0, when the eigen- 2Equation(22).
functions cease to be localized. PEquation(23).

We have checked various methods of approximation oiEquation(24).
the infinite interval, such as e.j) using Hermite polynomi- 9Equation(25).

—0.00038 0.0752  —0.0037 0.001 34
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much larger for the sech pulse, and contrary to the box-likdute values are lower than in the sech case, what means that

case all the shifts are positive. for the Gaussian shape the chirp affects less the soliton con-
It is clear from Eq.(23) that for largex the chirp factor tent of the initial pulse.

exp(Bx®) is rapidly oscillating, what may be a source of

numerical instabilities. In order to avoid such difficulties an

alternative form has been suggested in R8f:

V. CONCLUDING REMARKS

In the present paper we have discussed possible applica-
tion of the Rayleigh-Ritz procedure for solving the non-self-
adjoint eigenvalue problent2). The effectiveness of the
method has been illustrated by giving numerical examples

Contrary to the previous modé23), now the phase tends to for several initial pulses With_ a chirp._ In particular, it h_as
a constant and the chirp vanishesxls- . The constani been shown that the method is numerically stable and yields

depends on the pulse shape and for the sech pulse has bdgfiable results also in the vicinity of the threshoig=0
arbitrarily chosen as=1/12[3]. when the eigenfunctions cease to be localized and many

The shifts AA calculated for the pulse shap@4) are other approximate methods fail. Investigating the influence
shown in the fourth column of Table V. These values\gt  ©f the chirp on the threshold amplitudgy,, we have shown

; ; ; ; hat for a boxlike pulse, chirping causés,, to increase for
(after appropriate scaling to make the notation consistet PUISE, chirping ca r _
in a very good agreement with the results obtained by thdh® fundamental modeA(A>0), while AA<OQ for higher

perturbation method3]. As compared to the pulse shape modes. Contrary_to the box case, for pulses with long tails
(23), when all the shifts were positive, now we observe sub{S€ch and Gaussiame observeAA>0 for both fundamen-
stantially smaller values, and moreovAr changes its sign tal and higher modes. It should be stressed, however, that the

for the second mode. Thus, one can conclude that the anomilréshold amplitudes are very sensitive to the assumed form
lous behavior of the shiftA A reported in Ref[3] is not a  Of the chirping factor. For example, assuming the sage

characteristic property of the sech pulse, but follows rathefStead of(23) not only makes the shifta A much smaller,
from the assumed form of the chirp factor. but also reverses the sign AfA for the second mode.

Summarizing, one can conclude that the Rayleigh-Ritz
procedure yields accurate and numerically stable results for
various pulse shapépotential$ q(x). In particular, it is pos-

Numerical procedures for the Gaussian pulse are essesible to determine the soliton content of the initial pulse and
tially the same as for the sech pulse, with the fof®3)  predict precisely the threshold amplitude for appearance of a
replaced by new soliton. Thus, the discussed Rayleigh-Ritz procedure
may be an interesting alternative to other approximate meth-
ods of solving the ZS problem, both based on variational
approach and using direct numerical integration of the sys-
tem (2).

i Bx?

1+ ax?®

. (24)

g=A sechjx)exp(

C. Gaussian pulse

q=Aexp — a?x?)exp(i Bx?). (25)
Due to faster decay dx|— o we can “cut off” the potential
g at smaller values o, obtaining this way a better conver-
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