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Rayleigh-Ritz procedure for the Zakharov-Shabat system

Marek Jaworski
Institute of Physics, Polish Academy of Sciences, Aleja Lotniko´w 32 46, 02-668 Warszawa, Poland

~Received 21 May 1997!

The Rayleigh-Ritz variational procedure is applied to solve the Zakharov-Shabat scattering problem. An
approximate solution is assumed as a linear combination of basis functions, leading to a homogeneous system
of linear equations for eigenfunctions and an algebraic equation for eigenvalues. The effectiveness of the
variational approach is illustrated by calculating the discrete spectrum of the Zakharov-Shabat system. Several
numerical examples for various pulse-shaped potentials are given to demonstrate the practical usefulness of the
method.@S1063-651X~97!12111-0#

PACS number~s!: 03.40.Kf, 42.81.Dp
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I. INTRODUCTION

The linear scattering problem

v1,x52 i zv11q~x!v2 , ~1a!

v2,x5r ~x!v11 i zv2 , ~1b!

whereq(x), r (x) are given potentials,v1, v2 eigenfunctions,
and z the corresponding eigenvalue, plays a major role
solving a variety of nonlinear evolution equations by mea
of the inverse scattering transform~IST! @1#.

The system~1! with r (x)52q* (x) was applied first by
Zakharov and Shabat@2# to solve the nonlinear Schro¨dinger
~NLS! equation, and will be referred to as the ZS scatter
problem. Subsequently, Ablowitz,et al. @1# used the system
~1! to formulate the IST in a more general form, includin
such physically significant equations as Korteweg–de Vr
sine-Gordon, and others. The above equations can be ap
to describe nonlinear phenomena in a wide variety of fie
including fluid dynamics, plasma physics, solid-state–lo
temperature physics, etc. In this paper, however, we s
focus our attention on the important applications in nonlin
optics, related to the propagation of soliton pulses in opt
fibers.

In the context of nonlinear optics, the scattering poten
plays a role of an initial pulse, and an important physi
problem is to determine the soliton content of this pulse, i
to find the discrete spectrum of the system~1!. Unfortu-
nately, apart from very few initial conditions, for which a
exact solution exists, in a general case one has to use
proximate methods@3–7#, such as direct numerical integra
tion of Eqs.~1! or analytical approximations based, e.g.,
the WKB method. Only recently, Desaix, Anderson, a
Lisak @8#, and Kaup and Malomed@9# have formulated inde-
pendently a variational principle that can be used to solve
Zakharov-Shabat~ZS! system. In both papers mentione
above, the variational solution has been obtained usin
simple ansatz for the eigenfunctionsv1 andv2.

The main advantage of such an approach is the possib
of obtaining an analytical approximate solution, dependen
a simple manner on a few variational parameters. Howe
the solution obtained this way agrees often only qualitativ
with the exact solution and, in fact, we have no informati
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concerning the error of approximation. Moreover, as a rule
simple ansatz provides an estimate for a fundamental m
while finding higher modes with reasonable accuracy
quires much more complicated calculations.

On the other hand, there exist more systematic method
the Rayleigh-Ritz~RR! type @10#, which are based on the
series expansion of eigenfunctions and looking for a solut
as a set of successive approximations. The main advan
of such a procedure is that the consecutive approximat
tend to the exact solution, provided the basis set of the se
expansion is complete. Thus, in spite of the fact that in pr
tice we have to use finite expansions, it is possible to ob
rapid convergence and high numerical accuracy by a rea
able choice of basis functions.

Application of the RR procedure to the ZS system diffe
from the standard approach in quantum mechanics@10#.
First, the ZS problem is non-self-adjoint, what implies th
the eigenvalues are complex, and the stationary points of
appropriate functional are not its extremum values. Seco
the ZS problem is a system of two equations for two eig
functions, i.e., a (232) matrix eigenproblem, leading to
(2N32N) secular matrix. While the latter difficulty is o
purely technical nature, the former one is essential a
strongly influences the behavior of an approximate soluti

The aim of the present paper is twofold. First, we discu
application of the RR procedure to the ZS system in a m
systematic way, clarifying some doubts related to the n
self-adjointness of the eigenproblem. Second, we prese
few examples demonstrating the practical usefulness of
method, especially when the pulse area is at its thresh
value for appearance of a new soliton.

The paper is organized as follows. In Sec. II the ZS eq
tions are transformed to a non-self-adjoint eigenvalue pr
lem. We find the adjoint operator, derive biorthogonality r
lations and show that the eigenvalues can be determine
stationary points of a functional equivalent to that reported
Refs.@8,9#. The RR procedure is described in Sec. III, bo
for a general case and for pulse shapes satisfying some
metry relations. In Sec. IV we give numerical examples
lustrating applicability of the RR procedure for various pul
shapes. In particular, the effect of chirping on the thresh
amplitude ~or area! is discussed in detail. Finally, Sec. V
contains summary of the results and concluding remarks
6142 © 1997 The American Physical Society
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II. SPECTRAL PROBLEM AND VARIATIONAL
FORMULATION

Let us consider the system~1! with a special choice
r (x)52q* (x), leading to the ZS scattering problem

v1,x52 i zv11q~x!v2 , ~2a!

v2,x52q* ~x!v11 i zv2 , ~2b!

where the eigenvaluez5j1 ih is in general complex, and
localized discrete eigenstates appear whenh.0.

Rewriting Eqs.~2! in a matrix form we obtain the eigen
problem

LC5zC, ~3!

where

L5 i F ]x 2q

2q* 2]x
G , C5Fv1

v2
G .

For the~real! scalar product

~F,C!5E
2`

`

~FT
•C!dx, ~4!

the adjoint problem is given by

L̃F5mF, ~5!

where

L̃5 i F2]x 2q*

2q ]x
G , F5Fw1

w2
G , m5z,

and the eigenfunctions satisfy the biorthogonality conditi

~F~ i !,C~ j !!50, iÞ j . ~6!

Let us consider the standard functional

J~F,C!5
~F,LC!

~F,C!
. ~7!

It is easy to check thatw15v2 , w25v1; thus coming back
to v1 ,v2 functions we find

J~v1 ,v2!5 i

E
2`

`

@~v1,xv22v2,xv1!2~qv2
21q* v1

2!#dx

2E
2`

`

v1v2dx

,

~8!

which is equivalent to the functionals given in Refs.@8,9#.
It can be easily verified that the variationdJ vanishes for

v1 ,v2 satisfying Eqs.~2!, and the value of the functiona
corresponds to the eigenvaluez. However, contrary to self-
adjoint problems now at the stationary point neither real
imaginary part ofz attains an extremum.

For given initial pulse shapeq(x), the eigenproblem has
finite number of discrete states and the continuous spect
The fundamental mode~designated byi 50) appears at the
r

m.

lowest pulse area at the threshold valueh50. For higher
pulse areas additional~higher! modes emerge ath50, and
h (0).h (1).h (2).•••. Thus, the stationary pointdJ50, for
which we obtain the largest eigenvalue corresponds to
fundamental mode. Subsequent~higher! modes can be found
for the stationary points subject to additional orthogona
conditions:

~F~ j !,C!50, j 50,1,2, . . . ,~ i 21!, ~9!

wherei denotes the mode number for a higher eigenvalue
eigenfunction to be determined. We note also that the fun
mental eigenfunctions havei 50 nodes, while higher mode
correspond toi nodes for each eigenfunctionv1 ,v2.

III. RR PROCEDURE AND THE SYMMETRY RELATIONS

From the numerical viewpoint it is convenient to tran
form the functional~8! to an equivalent form

J̃~v1 ,v2!5E
2`

`

@~v1,xv22v2,xv1!2~qv2
21q* v1

2!#dx

12i zE
2`

`

v1v2dx, ~10!

and consider trial functions in a form of series expansion

v15(
n

anfn , v25(
n

bncn , ~11!

wherefn ,cn are two~generally different! complete sets of
basis functions, andan ,bn are expansion coefficients to b
determined.

Substituting expansions~11! to the functional~10!, and
making the derivatives]J/]an ,]J/]bn equal to zero, we ob-
tain a system of homogenous linear equations with respe
an and bn . If we replace infinite expansions~11! by finite
sums consisting ofN terms, the resulting secular (2N32N)
matrix will have the following block form:

F A B

C D G , ~12!

where the matrix elements are given by

Anm5E
2`

`

~fm,xcn2fmcn,x!dx12i zE
2`

`

fmcndx,

~13a!

Bnm8522E
2`

`

qcncm8dx, m85m2N, ~13b!

Cn8m522E
2`

`

q* fn8fmdx, n85n2N, ~13c!

Dn8m85E
2`

`

~fn8,xcm82fn8cm8,x!dx12i zE
2`

`

fn8cm8dx.

~13d!
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6144 56MAREK JAWORSKI
Making the determinant of Eq.~12! equal to zero, we
obtain an algebraic equation for the eigenvalue to be de
mined. Next, by increasingN we can form a sequence o
consecutive approximations tending to the exact solutio
N→`.

As mentioned in the preceding section, for given init
pulseq(x) the fundamental mode corresponds to the larg
stationary valueh. Next solutions can be found by lookin
for a stationary point of the functional~7! at the additional
orthogonality conditions~9! introduced to the functional
e.g., by the Lagrange multiplier method. However, if we
N, calculate approximatelyz (0),v1

(0) ,v2
(0) , and takeF (0) as a

fundamental mode in Eq.~9!, it can be shown@11# that the
next solutionz (1) will be identical with the next zero of the
secular determinant of Eq.~12!. Thus, instead of introducing
additional orthogonality conditions, we can find high
modes simply by looking for consecutive zeros of the secu
determinant.

So far, we have considered a general form of an ini
pulseq(x) and independent expansions~11!. For q(x) satis-
fying certain symmetry conditions it is possible to fin
simple relations betweenv1 and v2. Below, we discuss
briefly only two such symmetries.

~i! Substituting

q~2x!5q~x! ~14!

into Eqs.~2! we find

v2~x!5pv1* ~2x!, p561. ~15!

It can be deduced from symmetry considerations thatp521
for the fundamental mode,p511 for the first higher mode
etc. Assumingcn(x)5pfn(2x) we find expansion coeffi-
cients to satisfy the relationbn5an* , while the eigenvaluez
is purely imaginary or appears in complex-conjugate pai

~ii ! For

q~2x!5q* ~x! ~16!

we have simply

v2~x!5pv1~2x!, p561, ~17!

wherep521 for the fundamental mode, as before.
For cn(x)5pfn(2x) expansion coefficients are relate

by bn5an ; hence, the matrix expressions can be subs
tially simplified. Indeed, forN fixed we obtain a (N3N)
secular matrix, with elements given by

Anm5E
2`

`

@~fn,xcm2fncm,x!2~qcncm1q* fnfm!#dx

1 i zE
2`

`

~fncm1cnfm!dx. ~18!

IV. NUMERICAL EXAMPLES

A. Boxlike pulse

Let us consider first an example@9# for which exact ana-
lytic solution exists,
r-

if

l
st

r

l

.

n-

q5H A exp~ i e! for 0,x,a

A exp~2 i e! for 2a,x,0

0 for uxu.a.

~19!

Asymptotics of the Jost functions for a localized solution
Eqs.~2! implies that

v1→exp~2 i zx!, v2→0, as x→2`, ~20a!

v1→0, v2→exp~ i zx!, as x→`. ~20b!

In particular, for a potentialq(x) on a compact support we
have exactlyv250 for x,2a andv150 for x.a. Thus, it
is natural to choose the basis set

fn5sinF ~2n21!
p

4 S 12
x

aD G , ~21a!

cn5psinF ~2n21!
p

4 S 11
x

aD G , p561. ~21b!

The potential~19! satisfies the symmetry relation~16!;
thus, we can use a reduced form of the secular matrix~18!.
Numerical results for finite expansions including up
N550 terms are presented in Tables I and II, to show
convergence of the method. The exact analytical solut
follows from matching trigonometric functions atx50,61
and next solving the resulting transcendental equation
z5j1 ih. A physically meaningful solution must vanish a
infinity; hence, the asymptotic behavior~20! requiresh.0
for a localized state.

TABLE I. Complex eigenvaluesz5j1 ih for the boxlike po-
tential ~19!, A51, e51. Successive approximations forN up to 50
are shown together with the exact solution.

N j h

10 20.761 19 0.124 79
20 20.761 50 0.124 39
30 20.761 44 0.124 44
40 20.761 46 0.124 42
50 20.761 45 0.124 43

exact 20.761 453 0.124 429

TABLE II. Complex eigenvaluesz5j1 ih for the boxlike po-
tential ~19!, A52, e51. Successive approximations and exact s
lutions are shown for the fundamental (i 50) and the first higher
mode (i 51).

i 50 i 51

N j h j h

10 20.727 89 1.210 65 0.981 00 0.396 99
20 20.728 48 1.210 35 0.981 29 0.396 74
30 20.728 23 1.210 35 0.980 98 0.396 85
40 20.728 27 1.210 34 0.981 02 0.396 83
50 20.728 24 1.210 34 0.980 98 0.396 84
exact 20.728 241 1.210 342 0.980 980 0.396 842
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For A51, e51 ~Table I! only one localized state exists
while for A52, e51 ~Table II! we obtain two solutions
satisfyingh.0 and calculated with comparable accuracy

A more realistic model is a boxlike pulse with a chirp@3#,

q5H Aexp~ ibx2! for uxu,a,

0 for uxu.a.
~22!

This time, due to symmetry relation~14! the resulting eigen-
values are purely imaginary; however, we have to use
full (2N32N) matrix ~12!.

It is interesting to investigate threshold values of the pu
amplitudeAthr ~or equivalently, pulse area!, such that a new
soliton emerges ath50. It should be noted that in the vicin
ity of the threshold the eigenfunctionsv1 ,v2 are weakly lo-
calized, and forh→0 their amplitudes tend to constant va
ues asuxu→` @see Eq.~20!#. Such a behavior may caus
numerical instabilities forh.0, especially when solving
Eqs.~2! by direct numerical integration.

Fortunately, in the variational approach this difficul
does not appear, since the regions outside ofuxu5a do not
contribute to the integrals in Eq.~10!. As a result, we obtain
stable numerical solutions in the vicinity of the thresho
Moreover, it is formally possible to obtain even nonphysic
solutions with h,0, i.e., for eigenfunctions divergent a
uxu→`.

In Table III the threshold valuesAthr are shown for the
first three modes, together with the sh
DA5Athrub50.12Athrub50. It is clear that the effect of chirp
for small b is rather subtle, so accurate calculations are
quired. We note, thatDA.0 for the fundamental mode
while DA,0 for higher modes, in agreement with earli
results@3#.

B. Sech pulse

Let us consider a sech pulse with a chirp

q5A sech~x!exp~ ibx2!. ~23!

As before, a physically interesting problem is the solit
content of the pulse, as well as the influence of a chirp
threshold values of amplitude~or pulse area!.

Now however,q is not on a compact support, and a n
merical problem arises, how to reconstruct eigenfuncti
v1 ,v2 in the infinite region (2`,`). This problem becomes
more pronounced in the vicinity ofh50, when the eigen-
functions cease to be localized.

We have checked various methods of approximation
the infinite interval, such as e.g.~i! using Hermite polynomi-

TABLE III. Threshold valuesAthr and the shiftsDA for the
boxlike potential~22! and the chirp parameterb changing from 0 to
0.1. Results for the first three modes are shown.

Athr

Mode b50 b50.1 DA

0 0.785 40 0.785 86 0.000 46
1 2.356 19 2.355 90 20.000 29
2 3.926 99 3.926 61 20.000 38
e

e

.
l

-

n

s

n

als which form a basis set complete for (2`,`) or ~ii ! pro-
jecting thex axis onto the finite interval.

In all the cases one could obtain accurate results for w
localized solutions~far above the threshold!. However, as the
eigenvalue was close to zero, the convergence deterior
rapidly, and we were not able to obtain reliable results
h.0.

It turns out, however, that the best and simultaneously
simplest method is an apparently crude approximation c
sisting in ‘‘truncating’’ the potentialq for sufficiently large
uxu values and using the basis set of the type~21! on a finite
interval. The choice of the cut-off pointuxu5a depends on
the pulse shape and is a compromise between required a
racy and sufficiently fast convergence. For example, for
sech pulse we have chosena510 to obtain reasonable con
vergence and the absolute error estimated below 1025.

In Table IV we show examples of calculations for a se
pulse ~23! with A51, andb50, b50.8, respectively. Ac-
cording to general symmetry considerations, the eigenva
z is now purely imaginary. Forb50 we obtain the exac
solutionh50.5. Asb increases the eigenvalueh decreases
and the convergence becomes slower. Nevertheless, als
h.0 we obtain stable results. In particular, fo
A50.75, 0.5, 1.25 we find the thresholdh50 at
b50.4203, 0.8220, 1.2391, respectively, in excelle
agreement with the literature data@5#.

To compare the sech pulse with the boxlike case, we h
calculated the threshold amplitudesAthr and the shiftsDA for
b changing from 0 to 0.1. The results forDA are presented
in Table V together with similar calculations performed f
other pulse shapes. We can see that the absolute shiftDA is

TABLE IV. Imaginary parth of the eigenvalue for the sec
pulse~23!, A51 andb50, b50.8.

h

N b50 b50.8

10 0.475 58 —
20 0.499 63 0.012 03
30 0.500 00 0.019 36
40 0.500 00 0.019 57
50 0.500 00 0.019 60

TABLE V. Shifts DA of the threshold amplitudeAthr for the
chirp parameterb changing from 0 to 0.1. Comparison is made f
the first three modes and various pulse shapes.

DA

Mode Boxa Sechb Sechc Gaussiand

0 0.000 46 0.0419 0.0107 0.002 64
1 20.000 29 0.0652 0.0006 0.001 68
2 20.000 38 0.0752 20.0037 0.001 34

aEquation~22!.
bEquation~23!.
cEquation~24!.
dEquation~25!.
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6146 56MAREK JAWORSKI
much larger for the sech pulse, and contrary to the box-
case all the shifts are positive.

It is clear from Eq.~23! that for largex the chirp factor
exp(ibx2) is rapidly oscillating, what may be a source
numerical instabilities. In order to avoid such difficulties
alternative form has been suggested in Ref.@3#:

q5A sech~x!expS ibx2

11ax2D . ~24!

Contrary to the previous model~23!, now the phase tends t
a constant and the chirp vanishes asuxu→` . The constanta
depends on the pulse shape and for the sech pulse has
arbitrarily chosen asa51/12 @3#.

The shifts DA calculated for the pulse shape~24! are
shown in the fourth column of Table V. These values ofDA
~after appropriate scaling to make the notation consistent! are
in a very good agreement with the results obtained by
perturbation method@3#. As compared to the pulse shap
~23!, when all the shifts were positive, now we observe s
stantially smaller values, and moreover,DA changes its sign
for the second mode. Thus, one can conclude that the ano
lous behavior of the shiftsDA reported in Ref.@3# is not a
characteristic property of the sech pulse, but follows rat
from the assumed form of the chirp factor.

C. Gaussian pulse

Numerical procedures for the Gaussian pulse are es
tially the same as for the sech pulse, with the form~23!
replaced by

q5Aexp~2s2x2!exp~ ibx2!. ~25!

Due to faster decay asuxu→` we can ‘‘cut off’’ the potential
q at smaller values ofa, obtaining this way a better conve
gence.

The last column of Table V shows the shiftsDA calcu-
lated for the Gaussian pulse withs51 anda54. We can
see that all the shifts are again positive, however, the a
s.
e

een

e

-

a-

r

n-

o-

lute values are lower than in the sech case, what means
for the Gaussian shape the chirp affects less the soliton
tent of the initial pulse.

V. CONCLUDING REMARKS

In the present paper we have discussed possible app
tion of the Rayleigh-Ritz procedure for solving the non-se
adjoint eigenvalue problem~2!. The effectiveness of the
method has been illustrated by giving numerical examp
for several initial pulses with a chirp. In particular, it ha
been shown that the method is numerically stable and yie
reliable results also in the vicinity of the thresholdh50
when the eigenfunctions cease to be localized and m
other approximate methods fail. Investigating the influen
of the chirp on the threshold amplitudeAthr we have shown
that for a boxlike pulse, chirping causesAthr to increase for
the fundamental mode (DA.0), while DA,0 for higher
modes. Contrary to the box case, for pulses with long t
~sech and Gaussian! we observeDA.0 for both fundamen-
tal and higher modes. It should be stressed, however, tha
threshold amplitudes are very sensitive to the assumed f
of the chirping factor. For example, assuming the shape~24!
instead of~23! not only makes the shiftsDA much smaller,
but also reverses the sign ofDA for the second mode.

Summarizing, one can conclude that the Rayleigh-R
procedure yields accurate and numerically stable results
various pulse shapes~potentials! q(x). In particular, it is pos-
sible to determine the soliton content of the initial pulse a
predict precisely the threshold amplitude for appearance
new soliton. Thus, the discussed Rayleigh-Ritz proced
may be an interesting alternative to other approximate m
ods of solving the ZS problem, both based on variatio
approach and using direct numerical integration of the s
tem ~2!.
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